#Sauvegarder

0 Abonnés · 3 Publications

Dans le domaine des technologies de l'information, une sauvegarde, ou le processus de sauvegarde, désigne la copie et l'archivage de données informatiques afin qu'elles puissent être utilisées pour restaurer la version antérieure après une perte de données.

Dans la plateforme de données d'InterSystems, la sauvegarde désigne les procédures de sauvegarde des données dans les fichiers de base de données et toutes les procédures connexes qui garantissent qu'aucune donnée d'application n'est perdue pendant la sauvegarde et la restauration.

Documentation.

Article Guillaume Rongier · Sept 10, 2025 5m read

img

Cet article vous présente le concept des environnements virtuels en Python, qui sont essentiels pour gérer les dépendances et isoler les projets du système d'exploitation.

Qu'est-ce qu'un environnement virtuel?

Un environnement virtuel est un dossier qui contient :

  • Une version spécifique de Python
  • Au démarrage, un répertoire site-packages vide

Les environnements virtuels vous aideront à isoler votre projet de l'installation Python du système d'exploitation et d'autres projets.

Utilisation

Pour utiliser les environnements virtuels, vous pouvez suivre les étapes suivantes:

  1. Création d'un environnement virtuel: Vous pouvez créer un environnement virtuel à l'aide du module venv fourni avec Python. Ouvrez votre terminal et exécutez:

    python -m venv .venv
    

    Remplacez .venv par le nom de l'environnement souhaité.

  2. Activation de l'environnement virtuel: Après avoir créé l'environnement virtuel, vous devez l'activer. La commande varie en fonction de votre système d'exploitation:

    • Sous Windows:
    .venv\Scripts\Activate.ps1
    

    Si vous rencontrez une erreur, vous devrez peut-être exécuter la commande suivante dans votre terminal

    Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process -Force; .venv\Scripts\Activate.ps1
    
    • Sous macOS et Linux:
    source .venv/bin/activate
    

Une fois activé, le prompt de votre terminal se modifie pour indiquer que vous travaillez désormais dans l'environnement virtuel.

Exemple:

(.venv) user@machine:~/project$

Remarquez le préfixe (.venv) du prompt du terminal, qui indique que l'environnement virtuel est actif.

Vous pouvez maintenant installer des packages à l'aide de pip. Ils seront installés dans l'environnement virtuel plutôt que dans l'installation globale de Python.

Puis-je utiliser des environnements virtuels dans IRIS?

Bonne question!

La réponse est simple : oui et non.

  • Non, puisque IRIS ne prend pas officiellement en charge les environnements virtuels.
  • Oui, puisque après avoir lu tous ces articles, nous connaissons désormais le fonctionnement de Python, celui d'IRIS et nous savons ce qu'est un environnement virtuel. Nous sommes donc peut-être en mesure de simuler un environnement virtuel dans IRIS en utilisant les configurations et les paramètres appropriés.

Comment simuler un environnement virtuel dans IRIS?

Un environnement virtuel comprend deux éléments:

  • Une version spécifique de Python
  • Un répertoire site-packages

IRIS dispose d'un système appelé Flexible Python Runtime (environnement d'exécution Python flexible) qui nous donne la possibilité suivante:

  • utiliser une version spécifique de Python.
  • mettre à jour le sys.path pour inclure un répertoire spécifique.

Nous pouvons donc simuler un environnement virtuel dans IRIS en utilisant leFlexible Python Runtime et en configurant le sys.path pour inclure un répertoire spécifique et une version spécifique de Python. 🥳

La configuration d'un Flexible Python Runtime dans IRIS est facile, vous pouvez suivre les étapes décrites dans la documentation IRIS.

En bref, il faut:

  1. Configurez PythonRuntimeLibrary pour l'orienter vers le fichier lib python de la version Python spécifique que vous souhaitez utiliser.

    Exemple:

    • Windows : C:\Program Files\Python311\python3.dll (Python 3.11 sous Windows)
    • Linux : /usr/lib/x86_64-linux-gnu/libpython3.11.so.1.0 (Python 3.11 sous Ubuntu 22.04 avec architecture x86)
  2. Configurez le PythonPath pour l'orienter vers le répertoire site-packages de la version Python spécifique que vous souhaitez utiliser.

    Exemple:

    • Utilisez le répertoire site-packages de votre environnement virtuel, qui se trouve généralement dans le répertoire .venv/lib/python3.x/site-packages.

⚠️ Ainsi, toute votre instance IRIS sera configurée pour l'utilisation d'une version spécifique de Python et d'un répertoire site-packages spécifique.

🩼 Limitation :

  • Vous n'obtiendrez pas exactement le même sys.path que pour un environnement virtuel, car IRIS ajoutera automatiquement certains répertoires au sys.path, tels que <installation_directory>/lib/python et d'autres que nous avons examinés dans l'article sur les modules.

🤫 Si vous souhaitez automatiser cette opération, vous pouvez utiliser ce formidable package: iris-embedded-python-wrapper

Pour l'utiliser, il faut:

Que vous soyez dans votre environnement venv, puis installez le package:

(.venv) user@machine:~/project$
pip install iris-embedded-python-wrapper

Ensuite, liez simplement ce venv à IRIS à l'aide de la commande suivante:

(.venv) user@machine:~/project$
bind_iris

Vous verrez le message suivant:

INFO:iris_utils._find_libpyton:Created backup at /opt/intersystems/iris/iris.cpf.0f4a1bebbcd4b436a7e2c83cfa44f515
INFO:iris_utils._find_libpyton:Created merge file at /opt/intersystems/iris/iris.cpf.python_merge
IRIS Merge of /opt/intersystems/iris/iris.cpf.python_merge into /opt/intersystems/iris/iris.cpf
INFO:iris_utils._find_libpyton:PythonRuntimeLibrary path set to /usr/local/Cellar/python@3.11/3.11.13/Frameworks/Python.framework/Versions/3.11/Python
INFO:iris_utils._find_libpyton:PythonPath set to /xxxx/.venv/lib/python3.11/site-packages
INFO:iris_utils._find_libpyton:PythonRuntimeLibraryVersion set to 3.11

Pour dissocier le venv d'IRIS, vous pouvez utiliser la commande suivante:

(.venv) user@machine:~/project$
unbind_iris

Conclusion

Vous avez découvert les avantages de l'utilisation d'environnements virtuels en Python, la manière de les créer et de les utiliser, ainsi que la manière de simuler un environnement virtuel dans IRIS à l'aide du Flexible Python Runtime.

0
1 30
Article Irène Mykhailova · Juin 28, 2023 7m read

Le code source de l'article est disponible à l'adresse suivante : https://github.com/antonum/ha-iris-k8s 

Dans l'article précédent, nous avons expliqué comment configurer IRIS sur un cluster k8s avec une haute disponibilité, basée sur le stockage distribué, au lieu de la mise en miroir traditionnelle. À titre d'exemple, cet article utilisait le cluster Azure AKS. Dans cet article, nous poursuivons l'exploration des configurations de haute disponibilité sur k8s. Cette fois, basée sur Amazon EKS (service Kubernetes géré par AWS) et incluant une option pour effectuer la sauvegarde et la restauration de la base de données, basée sur Kubernetes Snapshot.

Installation

Passons tout de suite au travail. Tout d'abord, vous devez disposer d'un compte AWS et des outils AWS CLI,kubectl et eksctl. Pour créer le nouveau cluster, exécutez la commande suivante :

eksctl create cluster \
--name my-cluster \
--node-type m5.2xlarge \
--nodes 3 \
--node-volume-size 500 \
--region us-east-1

Cette commande prend ~15 minutes, elle déploie le cluster EKS et en fait un cluster par défaut pour votre outil kubectl. Vous pouvez vérifier le déploiement en exécutant :

kubectl obtenir les noeuds
NOM                                              ÉTAT    RÔLES            AGE   VERSION
ip-192-168-19-7.ca-central-1.compute.internal    Prêt    &lt;néant>   18d   v1.18.9-eks-d1db3c
ip-192-168-37-96.ca-central-1.compute.internal   Prêt    &lt;néant>   18d   v1.18.9-eks-d1db3c
ip-192-168-76-18.ca-central-1.compute.internal   Prêt    &lt;néant>   18d   v1.18.9-eks-d1db3c

L'étape suivante consiste à installer le moteur de stockage distribué Longhorn.

kubectl créer l'espace de nom longhorn-system
kubectl apply -f https://raw.githubusercontent.com/longhorn/longhorn/v1.1.0/deploy/iscsi/longhorn-iscsi-installation.yaml --namespace longhorn-system
kubectl apply -f https://raw.githubusercontent.com/longhorn/longhorn/master/deploy/longhorn.yaml --namespace longhorn-system

Et enfin, l'IRIS lui-même :

kubectl apply -f https://github.com/antonum/ha-iris-k8s/raw/main/tldr.yaml

À ce stade, vous aurez un cluster EKS entièrement fonctionnel avec le stockage distribué Longhorn et le déploiement IRIS installé. Vous pouvez revenir à l'article précédent et tenter de causer toutes sortes de dommages au cluster et au déploiement d'IRIS, juste pour voir comment le système se répare de lui-même. Consultez la section Simuler la défaillance section.

Bonus n° 1 IRIS en ARM

IRIS EKS et Longhorn sont tous deux compatibles avec l'architecture ARM. Nous pouvons donc déployer la même configuration en utilisant les instances AWS Graviton 2, basées sur l'architecture ARM.

Il suffit de changer le type d'instance pour les nœuds EKS en famille 'm6g' et l'image IRIS en ARM.

eksctl créer cluster \
--name my-cluster-arm \
--node-type m6g.2xlarge \
--nodes 3 \
--node-volume-size 500 \
--region us-east-1

tldr.yaml

conteneurs:
#- image: store/intersystems/iris-community:2020.4.0.524.0
- image: store/intersystems/irishealth-community-arm64:2020.4.0.524.0
name: iris

Ou utilisez simplement :

kubectl apply -f https://github.com/antonum/ha-iris-k8s/raw/main/tldr-iris4h-arm.yaml

Et voilà ! Vous avez obtenu votre cluster IRIS Kubernetes, fonctionnant sur la plateforme ARM.

Bonus n°2 - Sauvegarde et restauration

Une partie souvent négligée de l'architecture niveau production est la capacité de créer des sauvegardes de votre base de données et de les restaurer rapidement et/ou de les cloner en cas de besoin.

Dans Kubernetes, la façon la plus courante de le faire est d'utiliser des instantanés de volumes persistants (Persistent Volume Snapshots).

Tout d'abord, vous devez installer tous les composants k8s requis :

#Installer CSI Snapshotter et CRDs

kubectl apply -n kube-system -f https://raw.githubusercontent.com/kubernetes-csi/external-snapshotter/master/client/config/crd/snapshot.storage.k8s.io_volumesnapshotcontents.yaml
kubectl apply -n kube-system -f https://github.com/kubernetes-csi/external-snapshotter/raw/master/client/config/crd/snapshot.storage.k8s.io_volumesnapshotclasses.yaml
kubectl apply -n kube-system -f https://raw.githubusercontent.com/kubernetes-csi/external-snapshotter/master/client/config/crd/snapshot.storage.k8s.io_volumesnapshots.yaml
kubectl apply -n kube-system -f https://raw.githubusercontent.com/kubernetes-csi/external-snapshotter/master/deploy/kubernetes/snapshot-controller/setup-snapshot-controller.yaml
kubectl apply -n kube-system -f https://raw.githubusercontent.com/kubernetes-csi/external-snapshotter/master/deploy/kubernetes/snapshot-controller/rbac-snapshot-controller.yaml

Ensuite, configurez les informations d'identification du seau S3 pour Longhorn (voir instructions détaillées):

#Le godet s3 cible de la sauvegarde Longhorn et les informations d'identification à utiliser par Longhorn pour accéder à ce godet.
#Voir https://longhorn.io/docs/1.1.0/snapshots-and-backups/backup-and-restore/set-backup-target/ pour les instructions d'installation manuelle
longhorn_s3_bucket=longhorn-backup-123xx #le nom du godet doit être unique au niveau global, à moins que vous ne souhaitiez réutiliser des sauvegardes et des informations d'identification existantes.
longhorn_s3_region=us-east-1
longhorn_aws_key=AKIAVHCUNTEXAMPLE
longhorn_aws_secret=g2q2+5DVXk5p3AHIB5m/Tk6U6dXrEXAMPLE

La commande suivante reprend les variables d'environnement de l'étape précédente et les utilise pour configurer la sauvegarde Longhorn.

#configurer la cible de sauvegarde Longhorn et les informations d'identification

cat &lt;&lt;EOF | kubectl apply -f -
apiVersion: longhorn.io/v1beta1
kind: Setting
metadata:
 name: backup-target
 namespace: longhorn-system
value: "s3://$longhorn_s3_bucket@$longhorn_s3_region/" # la cible de sauvegarde ici
---
apiVersion: v1
kind: Secret
metadata:
 name: "aws-secret"
 namespace: "longhorn-system"
 labels:
data:
 # echo -n '&lt;secret>' | base64
 AWS_ACCESS_KEY_ID: $(echo -n $longhorn_aws_key | base64)
 AWS_SECRET_ACCESS_KEY: $(echo -n $longhorn_aws_secret | base64)
---
apiVersion: longhorn.io/v1beta1
 kind: Setting
metadata:
 name: backup-target-credential-secret
 namespace: longhorn-system
value: "aws-secret" # nom secret de la sauvegarde ici
EOF

Cela peut sembler compliqué, mais cela indique en fait à Longhorn d'utiliser un godet S3 spécifique avec les informations d'identification spécifiées pour stocker le contenu des sauvegardes.

Voilà, c'est fait ! Si vous allez maintenant dans l'interface utilisateur de Longhorn, vous pourrez créer des sauvegardes, les restaurer, etc.

Voici un petit rappel sur la façon de se connecter à l'interface utilisateur Longhorn :

kubectl get pods -n longhorn-system
# noter le nom complet du pod pour le pod 'longhorn-ui-...'
kubectl port-forward longhorn-ui-df95bdf85-469sz 9000:8000 -n longhorn-system

Cela permettrait de transférer le trafic vers Longhorn UI sur votre site http://localhost:9000.

Sauvegarde/restauration programmatique

Effectuer une sauvegarde et une restauration via l'interface utilisateur Longhorn peut être une première étape suffisante - mais nous ferons un pas en avant et effectuerons la sauvegarde et la restauration de manière programmatique, en utilisant les API Snapshot de k8s.

Tout d'abord, l'instantané lui-même. iris-volume-snapshot.yaml

apiVersion: snapshot.storage.k8s.io/v1beta1
kind: VolumeSnapshot
metadata:
  name: iris-longhorn-snapshot
spec:
  volumeSnapshotClassName: longhorn
  source:
    persistentVolumeClaimName: iris-pvc
Cet instantané de volume fait référence au volume source 'iris-pvc' que nous utilisons pour notre déploiement IRIS. Il suffit donc de l'appliquer pour lancer immédiatement le processus de sauvegarde.

C'est une bonne idée d'exécuter la fonction de Gel/Dégel du démon d'écriture d'IRIS avant/après l'instantané.
#Gel du démon d'écriture
echo "Gel du démon d'écriture d'IRIS"
kubectl exec -it -n $namespace $pod_name -- iris session iris -U%SYS "##Class(Backup.General).ExternalFreeze()"
status=$?
if [[ $status -eq 5 ]]; then
 echo "IRIS WD EST CONGELÉ, exécution de la sauvegarde"
 kubectl apply -f backup/iris-volume-snapshot.yaml -n $namespace
elif [[ $status -eq 3 ]]; then
 echo "ÉCHEC DU GEL DE L'IRIS WD"
fi
#Dégel du démon d'écriture
kubectl exec -it -n $namespace $pod_name -- iris session iris -U%SYS "##Class(Backup.General).ExternalThaw()"

Le processus de restauration est assez simple. Il s'agit essentiellement de créer un nouveau PVC et de spécifier l'instantané comme source.

apiVersion: v1
kind: PersistentVolumeClaim
metadata:
  name: iris-pvc-restored
spec:
  storageClassName: longhorn
  dataSource:
    name: iris-longhorn-snapshot
    kind: VolumeSnapshot
    apiGroup: snapshot.storage.k8s.io
  accessModes:
    - ReadWriteOnce
  resources:
    requests:
      storage: 10Gi

Il suffit ensuite de créer un nouveau déploiement, basé sur ce PVC. Regardez ce script de test dans un référentiel github qui se déroulerait de manière séquentielle :

  • Créer un nouveau déploiement d'IRIS
  • Ajouter des données à IRIS
  • Geler le démon d'écriture, prendre un instantané, dégeler le démon d'écriture
  • Créer un clone du déploiement d'IRIS, basé sur l'instantané.
  • Vérifier que toutes les données sont toujours présentes

À ce stade, vous aurez deux déploiements IRIS identiques, l'un étant un clone par sauvegarde de l'autre.

Profitez-vous-en bien !

0
0 133
Article Lorenzo Scalese · Mai 31, 2023 5m read

Les systèmes de bases de données ont des exigences de sauvegarde très spécifiques qui, dans les déploiements d'entreprise, nécessitent une réflexion et une planification préalables. Pour les systèmes de bases de données, l'objectif opérationnel d'une solution de sauvegarde est de créer une copie des données dans un état équivalent à celui de l'arrêt de l'application en douceur.  Les sauvegardes cohérentes avec les applications répondent à ces exigences et Caché fournit un ensemble d'API qui facilitent l'intégration avec des solutions externes pour atteindre ce niveau de cohérence des sauvegardes.

Ces API sont ExternalFreeze et ExternalThaw. ExternalFreeze met temporairement en pause les écritures sur le disque et pendant cette période, Caché commet les changements en mémoire. Pendant cette période, l'opération de sauvegarde doit se terminer et être suivie d'un appel à ExternalThaw. Cet appel engage les démons d'écriture à écrire sur le disque la mise à jour du pool tampon global (cache de la base de données) et reprend les opérations normales des démons d'écriture de la base de données Caché. Ce processus est transparent pour les processus utilisateur de Caché.  Les méthodes spécifiques de la classe API sont les suivantes :

##Class(Backup.General).ExternalFreeze()

##Class(Backup.General).ExternalThaw()

Ces API, associées à la nouvelle capacité d'Azure Backup à exécuter un script avant et après l'exécution d'une opération d'instantané, fournissent une solution de sauvegarde complète pour les déploiements de Caché sur Azure. La [capacité de script pré/post d'Azure Backup] (https://azure.microsoft.com/en-us/blog/announcing-application-consistent-backup-for-linux-vms-using-azure-backup) est actuellement disponible uniquement sur les VM Linux.

Conditions préalables

Au niveau le plus élevé, vous devez effectuer trois étapes avant de pouvoir sauvegarder une VM à l'aide d'Azure Backup:

  1. Create a Recovery Services vault
  2. Install has the latest version of the VM Agent.
  3. Check network access to the Azure services from your VM. 

L'espace de stockage Recovery Services gère les objectifs de sauvegarde, les politiques et les éléments à protéger. Vous pouvez créer une voûte de Recovery Services via le portail Azure ou via un script utilisant PowerShell.  Azure Backup nécessite une extension qui s'exécute dans votre VM, est contrôlée par l'agent Linux VM et la dernière version de l'agent est également nécessaire.  L'extension interagit avec les points d'extrémité HTTPS externes d'Azure Storage et de la voûte Recovery Services.  L'accès sécurisé à ces services depuis la VM peut être configuré à l'aide d'un proxy et de règles réseau dans un groupe de sécurité Azure Network Security Group. 

Vous trouverez plus d'informations sur ces étapes dans la section Préparez votre environnement pour sauvegarder les machines virtuelles déployées par Resource Manager.

La Configuration du pré-scripting et post-scripting

La possibilité d'appeler un script avant et après l'opération de sauvegarde est incluse dans la dernière version de l'extension Azure Backup (Microsoft.Azure.RecoveryServices.VMSnapshotLinux). Pour plus d'informations sur l'installation de l'extension, veuillez consulter [la documentation détaillée des fonctionnalités] (https://docs.microsoft.com/en-us/azure/backup/backup-azure-linux-app-consistent).

Par défaut, l'extension inclut des exemples de pré-scripts et post-scripts situés dans votre VM Linux à l'adresse suivante :

/var/lib/waagent/Microsoft.Azure.RecoveryServices.VMSnapshotLinux-1.0.9110.0/main/tempPlugin

Et doit être copié aux emplacements suivants respectivement.

/etc/azure/prescript.sh
/etc/azure/postScript.sh

Vous pouvez également télécharger le modèle de script à partir de GitHub.

Pour Caché, le script prescript.sh où un appel à l'API ExternalFreeze peut être implémenté et le postScript.sh doivent contenir l'implémentation qui exécute ExternalThaw.

Voici un exemple d'implémentation de prescript.sh pour Caché.

#!/bin/bash
# les variables utilisées pour retourner l'état du script
success=0
error=1
warning=2
status=$success
log_path="/etc/preScript.log"#path of log file
printf  "Logs:\n" > $log_path# TODO: Replace &lt;CACHE INSTANCE> with the name of the running instance
csession &lt;CACHE INSTANCE> -U%SYS "##Class(Backup.General).ExternalFreeze()" >> $log_path
status=$?if [ $status -eq 5 ]; then
echo "SYSTEM IS FROZEN"
printf  "SYSTEM IS FROZEN\n" >> $log_pathelif [ $status -eq 3 ]; then
echo "SYSTEM FREEZE FAILED"
printf  "SYSTEM FREEZE FAILED\n" >> $log_path
status=$error
csession &lt;CACHE INSTANCE> -U%SYS "##Class(Backup.General).ExternalThaw()"
fi

exit $status

Voici un exemple d'implémentation de postScript.sh pour Caché.

#!/bin/bash
# les variables utilisées pour retourner l'état du script
success=0
error=1
warning=2
status=$success
log_path="/etc/postScript.log"#path of log file
printf  "Logs:\n" > $log_path# TODO: Replace &lt;CACHE INSTANCE> with the name of the running instance
csession &lt;CACHE INSTANCE> -U%SYS "##class(Backup.General).ExternalThaw()"
status=$?
if [ $status req 5]; then
echo "SYSTEM IS UNFROZEN"
printf  "SYSTEM IS UNFROZEN\n" >> $log_pathelif [ $status -eq 3 ]; then
echo "SYSTEM UNFREEZE FAILED"
printf  "SYSTEM UNFREEZE FAILED\n" >> $log_path
status=$error
fi
exit $status

Exécution d'une sauvegarde

Dans le portail Azure, vous pouvez déclencher la première sauvegarde en naviguant vers le service de restauration. Veuillez considérer que le temps d'instantané de la VM devrait être de quelques secondes indépendamment de la première sauvegarde ou des sauvegardes suivantes. Le transfert de données de la première sauvegarde prendra plus de temps mais le transfert de données commencera après l'exécution du post-script pour dégeler la base de données et ne devrait pas avoir d'impact sur le temps entre le pré-script et le post-script.

Il est fortement recommandé de restaurer régulièrement votre sauvegarde dans un environnement de non-production et [d'effectuer des contrôles d'intégrité de la base de données] (http://docs.intersystems.com/latest/csp/docbook/DocBook.UI.Page.cls?KEY=GCDI_integrity#GCDI_integrity_verify_utility) pour garantir l'efficacité de vos opérations de protection des données.

Pour plus d'informations sur le déclenchement de la sauvegarde et d'autres sujets tels que la planification de la sauvegarde, veuillez consulter Sauvegarde des machines virtuelles Azure dans une voûte Recovery Services.  

0
0 60